ПРиводы электроэрозионных станков
Еще немного о линейных двигателях

ЕврОпейские мотор-редукторы
Сделано в Италии

Стоит ли изготавливать фурнитуру?
Как не распылиться по мелочам

Ременные передачи в современных машинах
и агрегатах
Шкивы для зубчато-ременных передач

Март 2006
Часть 2. Глобализация и компьютерный инжиниринг как основные ускорители развития PLM-технологий

Сегодня один из лидеров авиационной и ракетно-космической промышленности корпорация Boeing сформулировала амбициозную цель «... перейти от шестидесятимесячного цикла создания изделия к двенадцатимесячному и сделать за $1 млрд. то, что ... сделали последние раз за $6-7 млрд.», т.е. сократить сроки разработок в 5 раз, снизив при этом стоимость в 6-7 раз. В частности, корпорация Boeing заключила с компаниями Dassault Systemes и IBM самый крупный контракт в современной PLM-индустрии на использование PLM-системы CATIA 5.0 в рамках среды виртуальной разработки и сопровождения изделий Global Collaboration Environment (GCE) с целью проектирования и сопровождения на протяжении 30-летнего жизненного цикла нового самолета Boeing 787, получившего известность под именем 7E7 Dreamliner (стоимость контракта оценивается в несколько десятков миллионов долларов). С помощью совместного использования GCE-среды и VPD-технологий виртуальной разработки изделий инженеры Boeing, расположенные в разных странах мира, эффективно взаимодействуют и практически «в реальном времени» работают совместно, выполняя одновременно компьютерное проектирование и моделирование, общую компоновку и проверку всех компонентов нового самолета Boeing 787.

Достижения компаний-лидеров объясняются прежде всего активной ролью высшего руководства компаний при внедрении PLM-технологий, существенным изменением образа мышления сотрудников и стиля работы отдельных подразделений, и, конечно же, значительными финансовыми затратами на приобретение вычислительной техники (Hardware) и программного обеспечения (Software), регулярное повышение квалификации сотрудников, услуги консультантов и техническую поддержку. Но эти усилия и затраты на внедрение PLM-технологий только в США, по оценкам аналитической компании AMR Research, позволяют увеличить размеры совокупной прибыли...
промышленных предприятий более, чем на $100 млрд.

Разные экспертно-аналитические фирмы, оценивая развитие рынка PLM-технологий приходят к единому выводу: PLM-рынок растет и будет устойчиво расти в ближайшие годы (CIMdata оценивает темпы роста в 7,5% в год, Daratech — по 8% в год вплоть до 2008 года, а ARC Advisory Group — 11,5%); AMR Research полагает, что к 2008 году организации с годовым оборотом менее $1 млрд. инвестируют в PLM-технологии более $5 млрд.

При анализе этих результатов важно понимать, что многие производственные компании ищут программные решения, которые аналитическая компания Daratech относит к классу "3-6-9", т.е. те, которые можно внедрить за 3 месяца, окупить — за 6 месяцев и начать получать прибыль от финансовых инвестиций — за 9 месяцев. Достаточно очевидно, что все основные компоненты PLM-систем (CAD/CAM-, CAE- и PDM-системы) достаточно сложны и трудоемки в реализации и подготовке, а потому, как правило, не принадлежат к классу "3-6-9".

Однако следует отметить, что PLM-сегмент растет более высокими темпами, чем рынок программного обеспечения в целом, т.к. в области CAD/CAM-, CAE- и PDM-систем выделяется влияние отложенного спроса и рынок вступает в более зрелую и стабильную фазу развития в рамках процессов глобализации рынков и обострения конкурентной борьбы.

Еще одним доказательством перспективности мирового рынка PLM-технологий стал тот интерес, который проявляла фирма Microsoft, не обращавшая раньше особого внимания на этот сегмент рынка, видимо, потому, что по ее меркам объем данной отрасли сравнительно невелик — всего около 4% мирового рынка программного обеспечения. Но в 2005 году софтверный гигант вступил в стратегический альянс с Dassault Systèmes, заключив партнерские соглашения с UGS и Autodesk, а с последней компанией к тому же обменялись патентными лицензиями. Достаточно очевидно, что Microsoft решила укрепить свои позиции в промышленном секторе, «мы постараемся сделать PLM-программы доступными для более широкого круга промышленных предприятий», — заявил Билл Гейтс при объявлении союза с Dassault Systèmes.

Принципиально важно отметить, что проблема эффективного внедрения и применения PLM-технологий в России является системной и в условиях быстроразвивающихся передовых технологий затрагивает:

— образование, научные исследования и промышленные разработки;
— внутренний и внешний рынки, особенно, учитывая специфические моменты эпохи глобализации;
— продукцию как гражданского, так и военного назначения;
— проблемы постоянного сохранения конкурентоспособности как специалистов в выпускаемой продукции, так и организаций в целом (ВУЗы, КБ, промышленные предприятия, научно-внедренческие и консалтинговые фирмы, и т.д.) во всех сферах их деятельности.

Популярность и развитию рынка PLM-технологий в России кроме блестящих примеров лидеров мирового
производства способствуют и нарастающие процессы глобализации, а точнее, такая современная тенденция, как усиление международного разделения труда. Отчеты многих аналитических компаний свидетельствуют, что в последние времена неуклонно растет объем работ, передаваемых для выполнения за рубеж («субконтрактинг», «аутсорсинг»), как правило, в те страны, где высококвалифицированная рабочая сила стоит дешевле.

Чтобы выжить в условиях жесточайшей конкуренции многие зарубежные предприятия вынуждены отдавать часть своих работ в страны с более низкими затратами на их выполнение. Обязательным условием становится соблюдение договоренных сроков и высокое качество исполнения (достаточно упомянуть общеизвестные международные стандарты качества ISO и методологию Six Sigma, а также практику неизвестную в России КАЙДЗЭН-технологию постоянно го совершенствования как основу «японского чуда»).

Так, уже в 2004 году американские компании заплатили свыше $70 млрд. только за то, чтобы их работу выполнил кто-то другой. По данным журнала Design Magazine, 66% американских производителей уже начали эксплуатировать инженерные работы, выполненные с помощью CAD/CAM- и CAE-систем, а по оценкам аналитической компании IDC, число промышленных предприятий в США, применяющих аутсорсинг, прирастет в последнее время примерно на 10% ежегодно; при этом проектирование и инженерный анализ входят в ведущую тройку из перечня научноемких контрактов, которые целесообразно передавать на аутсорсинг.

Уточним, что означает термин аутсорсинг (outsourcing) – оказание необходимых услуг в течение определенного времени по согласованной цене. Основными причинами аутсорсинга, как правило, являются желание фирмы использовать самые последние достижения современных технологий, недостаток высококвалифицированного персонала, способного в сжатые сроки решить задачи освоения и внедрения современных технологий, и, наконец, острая потребность в снижении затрат.

В настоящее время уже ни у кого не вызывает сомнения, что глобализация — объективная тенденция, и она быстро набирает силу, причем если заказы на офшорное программирование подавляющим большинством случаев попадают в Индию, Сингапур, Малайзию, Китай, Таиланд и другие страны, имеющие высокие темпы роста IT-технологий, то для аутсорсинга научно-компьютерных работ весьма привлекательны именно российские специалисты, лучшие из которых имеют хорошее инженерное образование и высокую квалификацию в области применения CAD-CAM-технологий.

Сейчас этот вид научно-компьютерного бизнеса — глобальный аутсорсинг (Global Outsourcing) инженерных услуг — находится на начальном этапе своего развития. В настоящее время сегмент мирового рынка аутсорсинга, который наиболее привлекателен для российских специалистов, все дальше уходит от дешевого и примитивного кодирования в сторону аутсорсинга сложных инженерных и технологических решений и услуг. Именно это
направление аутсорсинга, несмотря на значительные сложности при его реализации, особенно интересно для России. Достаточно очевидно, что аутсорсинг инженерных услуг будет очень интенсивно развиваться в ближайшие годы, а у российских специалистов появляется уникальная возможность, выполняя заказы ведущих мировых промышленных фирм, участвовать в международном разделении труда с собственными разработками и многочисленными Know-How в области применения научноемких компьютерных технологий, в первую очередь, CAD- и CAE-систем. Подчеркнем, что для выполнения большинства таких CAD-CAE-контрактов в рамках Global OutSourcing-деятельности необходимо использовать именно те CAD-CAE-системы, которые используют и заказчики.

Представители ведущих отраслей промышленности, таких как авиастроение, автомобилестроение, энерго- и электромашиностроение, судостроение и электроника, работают в условиях жесткой конкуренции. Критически важными факторами успеха являются выпуск усовершенствованной продукции на рынок в кратчайшие сроки и постоянные инновации, в частности, связанные с внедрением PLM-технологий, при максимальном сокращении издержек на проектирование и производство. Добиться снижения издержек при сосредоточении всех интеллектуальных ресурсов фирмы в одном месте и при высоких уровнях оплаты труда персонала достаточно сложно, что и является стимулом к развитию аутсорсинга инженерных работ.

По данным аналитической компании AMR Research, инженерный аутсорсинг составляет пока незначительную, но быстро растущую часть мирового рынка таких услуг. Среди производственных фирм, принявших участие в опросе AMR, 15% передали на аутсорсинг часть своей исследовательской деятельности и инженерных работ, а 10% планировали сделать это до конца 2005 года.

Итак, работа в условиях глобализации и жесткой конкуренции требует регулярного и эффективного взаимодействия между многочисленными участниками процесса проектирования и производства, которые к тому же могут находиться в совершенно разных точках земного шара. Следовательно, без применения PLM-технологий, позволяющих организовать командную работу над изделием на протяжении всего его жизненного цикла, обойтись практически невозможно, что, в свою очередь, подталкивает средние и малые предприятия, участвующие в Global OutSourcing-деятельности, также переходить на PLM-технологии. Иначе им не удастся эффективно организовать сотрудничество с зарубежными партнерами по бизнесу. В результате CAD- и CAE-системы, представляющие собой центральную часть PLM-технологий, превращаются из индивидуального инструмента в эффективные средства командной работы.

Отметим некоторые основные тенденции развития CAD/CAM-сistem, которые в последние годы усилиями тысяч разработчиков превратились в мощные и надежные системы, автоматизирующие выполнение практически всех распространенных операций проектирования и технологической подготовки к производству. Для последних версий наиболее распространенных CAD-CAM-систем характерен ряд общих моментов их эволюционного развития:

- пользовательский интерфейс CAD-систем всех уровней с каждой версией становится удобнее;
- CAD-системы среднего класса все более тесно интегрируются с CAM- и PDM-системами и содержат некоторые элементы CAE-систем, что позволяет конструкторам выполнять простейшие инженерные расчеты, не покидая единого пользовательского интерфейса;
- CAD-системы содержат утилиты для обнаружения и исправления наиболее распространенных ошибок данных, возникающих при передаче моделей из одной системы в другую;
- CAD-системы для твердотельного моделирования среднего класса теперь включают средства моделирования поверхностей сложной формы, что необходимо при работе с изделиями из листового металла;
- CAD-модели становятся все более фотorealистичными.

Другим «локомотивом» PLМ-рынка, наряду с глобальным аутсорсингом, за последние два года стали программные системы, предназначенные для выполнения инженерного анализа – CAE-системы (напомним, что аббревиатура CAE порождена словосочетанием Computer-Aided Engineering). В настоящее время в CAE-сегменте PLМ-рынка наблюдается настоящий бум: по данным аналитической компании Daratech, в 2004 году объем продаж CAE-систем в целом вырос на 12% по сравнению с 2003 годом и превысил знаменательный рубеж – $2 млрд. В ноябре 2004 года компания Daratech опубликовала данные исследований,
свидетельствующие, что доля рынка САЕ-систем достигла 25% от объема всего ПЛМ-рынка. Большинство разработчиков САЕ-систем подтвердило большие объемы продаж и в то же время признавается 2005 году. Причем принципиально важно отметить, что по прогнозам экспертов объемы продаж САЕ-систем в дальнейшем будут неуклонно снижаться, так как мировой рынок САЕ-систем близок к насыщению, а рынок наукоемких САЕ-технологий и близайшие годы будет расти напрямиками темпами.

Ежегодный прирост рынка САЕ-систем оценивается примерно в 13,5% (что выше темпов роста ПЛМ-рынка в целом) и к 2014 году составит около $8 млрд. (для сравнения в 2002 году крупнейшие поставщики ПЛМ-систем имели общий доход $5,65 млрд.).

Отметим главные причины возрастающего интереса к САЕ-системам:
- стратегическое и регулярное увеличение вычислительной мощности компьютеров за последние 25 лет;
- значительное расширение спектра функциональных возможностей САЕ-систем, позволяющих на основе рациональных математических/механических/конструктивно- элементных моделей, обладающих высоким уровнем адекватности реальным объектам и процессам, чрезвычайно быстро выполнять компьютерное моделирование и получать достоверные результаты - об этом раньше приходилось только мечтать;
- признание ведущей роли САЕ-моделирования для ускорения выпуска новой конкурентоспособной продукции, повышения качества продукции и снижения финансовых и временных затрат на разработку новых образцов.

Итак, с Hardware все понятно - ни одно техническое достижение не умножило так возможности человека, как создание и стремительное развитие компьютеров, которые увеличили в миллиарды раз скорость выполнения арифметических и логических опе- раций, что позволило принципиально изменить характер и существенно повысить производительность интеллектуального труда. По существу мы являемся свидетелями и участниками "компьютерной революции", подобно той промышленной революции XVIII века, которая явила результатом изобретение паровой машины и сопровождалась колоссальным повышением производительности физического труда. Американские эксперты придают такое яркое сравнение: "Если бы за последние 25 лет авиационная промышленность развивалась бы столь же стремительно, как и вычислительная техника, то Boeing 767 можно было бы сегодня приобрести за $500 и облететь на нем земной шар за 20 минут, израсходовав при этом 19 литров горючего".

Итак, в соответствии с законом Мура стоимость высокопроизводительных компьютеров, необходимых для инженерных расчетов, значительно снизилась. В результате САЕ-системы, которые раньше работали исключительно на суперкомпьютерах и мощных специализированных рабочих станциях, теперь могут эффективно функционировать на мощных персональных компьютерах. Если раньше для полномасштабного моделирования требовались суперкомпьютеры, тогда для тех же расчетов достаточно кластера из рабочих станций, стоимость которого значительно меньше затрат на суперкомпьютер. Чрезвычайно перспективным представляется вариант специализированной схемы распределения высокопроизводительных вычислений (Distributed High-Performance Computing, DHPC) на базе гетерогенной локальной сети, состоящей из мощных персональных компьютеров, что требует еще меньше финансовых затрат, особенно в части, называемой "стоимость владения и обновления".

Необходимо отметить, что в течение длительного времени специалисты, работающие в промышленности, специфически относились к возможностям САЕ-систем, считая результаты натурных экспериментов более точными и надежными, чем результаты компьютерного моделирования. И для этого были все основания. Так, в книге акад. О.М. Белоцерковского и его учеников [8] приведены такие сведения: "...фирма «Бойнг» был проведен тщательный анализ результатов примерно 700 расчетных работ, проведенных на ЭВМ в 70-80 годах прошлого столетия; оказалось, что 70% конечных результатов расчетов были неверными и причиной тому явилось использование неадекватных математических моделей". Добавим, что, по-видимому, более правильно говорить об ограниченных возможностях компьютерного моделирования, имевшихся в то время, и в не соответствии этих возможностей уровню сложности предъявляемых для решения задач. Ясно, что такое положение вещей лишь могло увеличивать долю спекуляций в оценке возможностей компьютерного моделирования того времени.

Однако в настоящее время отношение к численным результатам начинает кардинально меняться. Это связано с тем, что в последние годы специалисты ведущих мировых промышленных компаний приобрели положительный опыт реализации сложных проектов, обладающих своим успехом, в первую очередь, применению именно САЕ-технологий. Кроме того, САЕ-системы с каждым годом становятся удобнее и нагляднее в применении, обладая при этом широким спектром возможностей визуализации результатов численных расчетов, достаточно упрощают компьютерные анимации сложных нестационарных процессов. Компьютерное моделирование в настоящее время можем и весьма желательно использовать совместно с натурными экспериментами как для верификации получаемых численных результатов, так и для идентификации параметров математических моделей, «тонкой» настройки математических, механических и компьютерных моделей с целью
повышения уровня адекватности разработанных моделей реальным объектам и/или процессам, что ведет к повышению точности результатов компьютерного моделирования.

Так как развитие компьютерного моделирования и непрерывное совершенствование функционального наполнения CAE-систем происходит на благоприятном фоне снижения стоимости и повышения доступности высокопроизводительных компьютеров, то эти взаимоувязывающие процессы минимально сопровождаются все более широким и интенсивным внедрением CAE-систем в практику инженерных расчетов. Более того, расчеты, длительность которых ранее составляла несколько дней или недель, теперь выполняются за несколько часов. Это означает, что ежегодно, с каждой новой версией CAE-систем, возможности инженеров по решению сложных задач механики конструкций, особенно нестационарных нелинейных пространственных задач, задач механики жидкости и газа (Computational Fluid Dynamics, CFD), связанных задач механики деформируемого твердого тела (т.н. «Multiphysics Problems»), возрастают и расширяются, т.е. «те задачи, о решении которых всего пару лет назад инженеры лишь мечтали, сейчас можно формулировать и решать, более того, получать численные решения с высокой степенью точности».

По мнению экспертов, рынок CAE-систем может расти даже более высокими темпами, чем 12% в год, так как возможности научных CAE-технологий далеко выходят за рамки простого повышения производительности труда конструкторов, как это было в свое время в связи с широким внедрением CAD-систем (вспомним, что 35 лет назад Национальный научный фонд США назвал появление CAD-систем самым выдающимся событием с точки зрения повышения производительности труда со времен изобретения электричества).

Принципиально важно понимать, что CAE-технологии позволяют обоснованно выбирать запасы прочности при снижении материалоемкости конструкций и машин, ускорить создание и выпуск конкурентоспособных изделий в продажу, значительно снизить затраты на гарантийное обслуживание и, что самое главное, разрабатывать и производить в кратчайшие сроки изделия более высокого качества, которые более долговечны. Естественно, что в настоящее время ведущие мировые промышленные предприятия считают тотальное внедрение CAE-технологий одной из наиболее актуальных задач.

Эксперты из аналитической компании Daratech уверены, что смена отношений к внедрению и применению CAE-систем происходит в ближайшем будущем.

а также в отечественной и мировой промышленности.

Способ производства - с помощью литья из алюминия при уменьшении общего веса конструкционного элемента и удовлетворении требований прочности и жесткости.

На Рис. 1(в, г) представлена 3D конечно-элементная (КЭ) модель, которая содержит 1 036 608 степеней свободы (NDF). На Рис. 2 приведены поля интенсивности напряжений по Мизесу для первоначального варианта (Рис. 2а) конструкции и для двух модифицированных вариантов (Рис. 2б, в). Анализируя представленные рисунки, можно заметить, что в процессе оптимизации конструкции (изменение радиусов закруглений, увеличение толщины и установка дополнительных ребер в зонах концентрации напряжений и др.) удалось значительно снизить напряжение.

На Рис. 3(а) показана 3D CAD-модель переднего силового бампера одного из новейших автомобилей-внедорожников. Цель расчетов - многовариантное КЭ исследование 3D напряженного состояния силового бампера и оценка работоспособности нового конструкционного варианта при заданных специфических условиях статического нагружения, сохранении требуемой жесткости и уменьшении общей массы.

На Рис. 3(б) изображен фрагмент КЭ модели бампера, которая содержит 540 810 степеней свободы. На Рис. 3(в, г) приведены поля интенсивности напряжений по Мизесу для передней и задней поверхностей бампера соответственно. Установлено, что в местах крепления фаркопа к нижней балке и местах крепления нижней балки к кузовным элементам возникают зоны концентрации напряжений, которые удалось значительно снизить в процессе дальнейшей рациональной оптимизации конструкции.

Одно из основных требований, предъявляемое к трейлерам - экономичность - умеренное потребление топлива. При этом важным фактором, оказывающим влияние на данный показатель, являются характеристики обтекаемости...
трейлера набегающим воздушным потоком, в первую очередь, коэффициент лобового сопротивления. Для выполнения многовариантного CFD-анализа разработана серия 3D КЭ моделей, которые содержат около 5 млн. ячеек. На Рис. 4(a, b) приведены распределение давления по внешним поверхностям 3D модели трейлера и линии тока, возникающие при обтекании движущегося трейлера набегающим воздушным потоком. Рис. 4(b) иллюстрирует наложение линий тока воздушного потока на изображение одного из легендарных трейлеров. В результате выполненных CFD-расчетов получена новая конструкция вихревентераторов и определены зоны их установки, которые позволяют снизить лобовое сопротивление грузового трейлера набегающему воздушному потоку и, соответственно, уменьшить затраты на топливо.

На Рис. 5(a) представлена 3D CAD-модель газотурбинной установки, которая содержит ротор, расположенный внутри корпуса компрессора, камеры сгорания и турбины, и учитывает основные особенности конструкции – горизонтальные и вертикальные фланцевые соединения. 3D CAD-модель газотурбинной установки предназначена для КЭ исследования 3D стационарных и нестационарных полей температуры, 3D напряженно-деформированного состояния с учетом контактного взаимодействия фланцевых соединений и вибрационного анализа.

На Рис. 5(b, в) приведены 3D CAD-модель и 3D КЭ модель (210312 степеней свободы) турбокомпрессора газотурбинной установки, предназначенная для исследования собственных частот и форм свободных колебаний. На Рис. 5(г) представлена одна из форм свободных колебаний турбокомпрессора газотурбинной установки.

На Рис. 6(a) представлена 3D CAD-модель полнопроходного шарового крана DU300, являющегося одним из основных узлов разветвленной сети трубопроводов подачи воды, нефтеп и текучих химических продуктов. На Рис. 6(b) серым цветом показано поворотное запорное устройство – шар. Одной из важных проблем проектирования современной запорной арматуры является снижение веса и удовлетворение критериев прочности. Выполненные многовариантные КЭ исследования 3D напряженно-деформированного состояния конструкции позволили определить области интенсивных напряжений и обеспечить значительное снижение общей массы с необходимым коэффициентом запаса. На Рис. 6(г) и 6(д) представлена типичная 3D КЭ модель, на Рис. 6(е) – типичное распределение интенсивности напряжений по Миссу в основных деталях (штучер, шар, корпус) шарового крана.

Список источников

